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Advances in our understanding of the genetic and neural substrates of obsessive-
compulsive disorder (OCD) and related spectrum disorders such as trichotilloma-
nia, as well as their characteristic behavioral and cognitive symptoms, render the
search and evaluation of appropriate animal models especially timely. Such mod-
eling in neurology and neuropsychiatry generally occurs on at least two levels: the
etiological, in terms of genetics and molecular pathology, and the symptomatic, in
terms of identifying suitable neurocognitive endophenotypes that encompass the
range of behavioral and psychiatric manifestations of particular disorders in the

This chapter was first published as “Cross-Species Models of OCD Spectrum Disorders.”
Psychiatry Research 170:15–21 2009. Copyright 2009. Used with permission.

This work was supported by a Programme Grant from the Wellcome Trust to TWR. The
Behavioural and Clinical Neuroscience Institute (BCNI) is funded by a joint award from
the Medical Research Council (MRC) and the Wellcome Trust. Dr. Boulougouris is sup-
ported by the Domestic Research Studentship, the Cambridge European Trusts and the
Bakalas Foundation Scholarship. Dr. Chamberlain is supported by a priority research stu-
dentship from the MRC and by the School of Clinical Medicine, University of Cambridge.



200 Obsessive-Compulsive Spectrum Disorders

context of altered brain circuitry. The former is generally difficult in psychiatry as
distinct from neurogenetic disorders such as Huntington’s disease or where the
molecular pathology is well defined, as in the case of Alzheimer’s disease. Although
there are a number of candidate genes for obsessive-compulsive spectrum disorders
(OCSDs), it is probable that multiple genes confer vulnerability, each with small
effect, thus making it especially difficult to model disease in a suitable transgenic
preparation. Even if such a preparation was feasible, there would be questions
about the extent to which its behavioral phenotype in the mouse could simulate
all of the subtleties of the clinical syndrome. Several studies have provided impor-
tant information regarding the neural and neurochemical substrates of OCD, and
the availability of somewhat effective pharmacological treatments (e.g., selective
serotonin reuptake inhibitors [SSRIs], see Fineberg and Gale 2005) provides es-
sential information that in combination with other evidence contributes to criteria
to be set for model validation (discussed later).

This review focuses on animal models of OCD based on criteria for model
evaluation. Hence, before reviewing these models, it is important to discuss the cri-
teria by which the validity of an animal model might be assessed.

Assessing Animal Models

Validation criteria are general standards that are relevant to the evaluation of any
model. Although there have been several attempts to discuss criteria for the evalu-
ation of animal models (Geyer and Markou 1995; Matthysse 1986; McKinney
and Bunney 1969; Segal and Geyer 1985), most of these discussions are based on
the assumption that it is not always made explicit. Probably the most widespread
classification system is the one proposed by Willner (1984). Willner grouped the
different criteria for assessing animal models into criteria used to establish face,
predictive, and construct validity. Face validity concerns the phenomenological
similarity between the animal model and the disorder it models. The model should
resemble the human phenomenon in terms of its etiology, symptomatology, treat-
ment, and physiological basis. Predictive validity generally means that performance
in the experimental test predicts performance in the modeled human phenome-
non. Although predictive validity in principle can rely on etiological factors, phys-
iological mechanism, and pharmacological isomorphism, Willner (1991) added
that in practice predictive validity usually relies on the latter. Construct validity
means that the model should be logical in itself and is based 1) on the degree of
functional homology between the modeled behavior and the behavior in the model
that depends on the two behaviors sharing a similar physiological basis, and 2) on
the significance of the modeled behavior in the clinical setting.

Unfortunately, this validation system is very rigid in its definitions and is
highly subjective. An additional attempt to describe and classify the criteria for
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evaluating the validity of animal models has been made by Geyer and Markou
(1995, 2002). Working from Willner’s definitions, Geyer and Markou restricted
face validity to the phenomenological similarity between inducing conditions and
specific symptoms of the human phenomenon, while defining predictive validity
as the extent to which an animal model allows accurate predictions about the hu-
man phenomenon based on the performance of the model. Moreover, reliability
means that the behavioral outputs of the model are robust and reliable between
laboratories. Based on these definitions, Geyer and Markou (1995, 2002) con-
cluded that the evaluation of experimental models in neurobiological research
should rely solely on reliability and predictive validity, face similarity being con-
sidered a subjective, and therefore secondary, criterion. In other words, every pro-
posed model has to offer a specific, measurable behavior that is pharmacologically
analogous with the clinical disorder under study, in order to predict the response of
the disorder to new pharmacological treatments.

Although there is a longstanding debate over terminology and classification, it
is widely recognized that no one animal model can account for the psychiatric syn-
drome it mimics in its entirety and that the validation criteria that each model has
to fulfill to demonstrate its validity are determined by the defined purpose of the
model (Geyer and Markou 1995; Matthysse 1986; Willner 1991).

Clinical Profile and Neurobiological Substrate 
of Obsessive-Compulsive Disorder

OCD is characterized by intrusive and unwanted ideas, thoughts, urges, and im-
ages known as obsessions, together with repetitive ritualistic cognitive and physical
activities comprising compulsions. OCD is heterogeneous in terms of its symptom-
atology, which appears to reflect different pathophysiological mechanisms. Based
on specific analytic methods, OCD symptoms have been split into four categories
(Cavallini et al. 2002; Leckman et al. 1997; Summerfeldt et al. 1999): 1) aggressive
sexual and religious obsessions with checking compulsions; 2) symmetry obses-
sions with compulsions of classification, sorting, and repetitiveness; 3) obsessions
of contamination with cleaning compulsions; and 4) hoarding. There is some ev-
idence that these symptom clusters differ in terms of treatment response (Black et
al. 1998; Mataix-Cols et al. 1999, 2002; Winsberg et al. 1999), comorbidity with
other psychiatric disorders (Samuels et al. 2002), and genetic predisposition (Leck-
man et al. 2003).

The essential features of OCD and related spectrum disorders capable of being
captured by animal models are the maladaptive and perseverative behavioral or
cognitive output, mediated by dysfunctional nodes within the frontostriatal cir-
cuitry, probably modulated by altered dopaminergic or serotoninergic influences,
for example, the repetitive rituals in OCD, or hair-pulling in trichotillomania. Hu-
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man neuroimaging studies have implicated in particular the orbitofrontal cortex
and the caudate nucleus in OCD, and cingulotomy has had a limited therapeutic
success (see Baxter 1999). However, there may be grounds for considering OCSDs
as reflecting impaired functioning of several distinct frontostriatal “loops” (Cham-
berlain et al. 2005, 2007a; Choi et al. 2007; Graybiel and Rauch 2000; Menzies et
al. 2008; Nakao et al. 2005; Whiteside et al. 2006). Animal models of OCSDs
have generally fulfilled the criteria of face validity but have sometimes been based
on psychological theorizing about the nature of OCD, thus attempting the deeper
level of modeling, construct validity. Predictive validity can therefore be employed
to a limited extent in OCD, given the known but largely unexplained efficacy of
the SSRIs (beginning with fluoxetine) and other less widely evaluated candidate
treatments such as dopamine D1 receptor antagonists and specific serotonin recep-
tor agents.

Current Ethological and Laboratory Animal 
Models of Obsessive-Compulsive Disorder

ETHOLOGICAL ANIMAL MODELS

The animal literature has approached OCD from two angles, namely ethological
models and laboratory models (genetic, pharmacological, and behavioral). Etho-
logical models (see Table 8–1) focus on spontaneous persistent behaviors with ge-
netic components reminiscent of OCD, offering good face similarity and predic-
tive validity but low practicality. Such behaviors include tail-chasing (Brown et al.
1987) and fur-chewing, acral lick dermatitis (paw licking) in dogs (Rapoport et al.
1992), psychogenic alopecia (hair-pulling) in cats (Swanepoel et al. 1998), feather
picking in birds (Grindlinger and Ramsay 1991), cribbing in horses (Luescher et
al. 1998), schedule-induced polydipsia (which can be considered as a form of dis-
placement behavior in the face of the thwarting of goal-directed behavior, e.g.,
Robbins and Koob 1980; Woods et al. 1993) and food-restriction-induced hyper-
activity (Altemus et al. 1996). Other responses in animals that have been likened to
OCD-like behavior include wheel-running, allogrooming (or “barbering,” cf. tri-
chotillomania) in mice (Garner et al. 2004), and marble-burying (the use of bed-
ding material to bury noxious/harmless objects, behavior that may be induced by
basic fear avoidance mechanisms; Ichimaru et al. 1995). Some of these models
have tested the effects of SSRIs and also compared them with the effects of drugs
ineffective in OCD (Altemus et al. 1996; Nurnberg et al. 1997; Rapoport et al.
1992; Winslow and Insel 1991; Woods et al. 1993). It is worth noting that the re-
ported efficacy of clomipramine in OCD and trichotillomania was predicated by
observations of its remediating effects on canine lick dermatitis (Rapoport et al.
1992; Swedo et al. 1989) and similar abnormal behavior elicited in veterinary con-
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texts. For example, psychogenic alopecia in cats (Swanepoel et al. 1998), cribbing
in horses (Luescher et al. 1998), and repetitive pacing in several species, often elic-
ited by stressful environments, continue to be a valid source of naturalistic stereo-
typies that may be informative about OCSDs (Stein et al. 1994). Both stereotypies
and schedule-induced polydipsia have been considered as “coping responses” that
hypothetically reduce stress. This hypothesis, however, has proved difficult to test
experimentally and may well not apply to all forms of stereotypy.

GENETIC AND PHARMACOLOGICAL MODELS

In terms of genetic models (see Table 8–1), these have largely been based on face
validity and include the hoxb8 mutant (Greer and Cappechi 2002) as well as ge-
netic manipulations of both dopamine and serotonin functioning leading to sim-
ilar behavior. Greer and Cappechi (2002) reported that mice with mutations of the
Hoxb8 gene (expressed in the orbital cortex, the striatum and the limbic system, all
of which are implicated in OCD pathophysiology) groomed excessively to the
point of hair removal and skin lesions compared with their control counterparts. In
terms of genetic manipulations of dopamine and serotonin, boosting D1 receptor
function by a neuropotentiating cholera toxin expressed in the pyriform cortex and
amygdala produces perseveration and repetitive jumping behavior in mice, named
D1CT-7 mice, probably mediated ultimately via striatal mechanisms (Campbell et
al. 1999a, 1999b, 1999c). It should also be noted that this repetitive jumping be-
havior was exacerbated by the administration of yohimbine, an anxiogenic drug
(McGrath et al. 1999). Knockdown of the dopamine transporter (DAT) produces
“sequential super-stereotypy” in mice, named “DAT KD” mice, with the persever-
ative performance of quite complex chains of grooming behavior (Berridge et al.
2005). A knockdown of the 5-HT2C receptor similarly leads to perseverative
“head-dipping” or the excessively orderly chewing of screen material (Chou-Green
et al. 2003), a compulsive behavior (accompanied by other like responses such as
stereotypic locomotion and excessive self-aggressive grooming) that has also been
shown in rats following chronic lesions of median raphe nucleus (Hoshino et al.
2004). Some of these responses obviously have clear superficial parallels to some of
the elaborative rituals in OCD, possibly related to hygiene and checking. However,
it is of course essentially impossible to know in fact how closely related they are. It
seems likely that these examples of stereotyped behavior are mediated by striatal
structures, given the known role of the caudate–putamen in stereotyped behavior
produced by psychomotor stimulant drugs (Creese and Iversen 1975) and in nor-
mal grooming sequences (Aldridge and Berridge 1998).

It is tempting to utilize pharmacological models based on the stereotypy pro-
duced by stimulants such as amphetamine at high dosages (Lyon and Robbins
1975). Although stereotypies in rodents typically consist of gnawing and licking
with repetitive sideways movements of the head that may represent vestiges of ori-
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enting behavior, they can be elaborated in many ways, for example, to include
grooming (including allogrooming, Sahakian and Robbins 1975) and persevera-
tive operant behavior in which rats may continue to work for food they do not eat
(Robbins and Sahakian 1983). These responses are dopamine mediated, but it may
be a mistake to consider them as being directly related to OCSD because, for ex-
ample, treatment of mice receiving the D1 receptor potentiation treatment actually
exhibit reduced stereotypy after treatment with cocaine, showing that drug-in-
duced stereotypy and the behavior produced by enhanced D1 receptor overexpres-
sion do not necessarily lie on the same continuum (Campbell et al. 1999b). This
may also be reflected in clinical experience. For example, D-amphetamine has ac-
tually been shown to ameliorate OCD symptoms in certain circumstances (Insel et
al. 1983). Nevertheless, Szechtman et al. (1998) have shown that the D2/D3 ago-
nist quinpirole leads to behavior that can be analyzed as a form of repetitive “check-
ing” behavior in rats. Specifically, after drug administration (0.5 mg/kg twice
weekly for 5 weeks), rats were placed individually into an open field with four ob-
jects at fixed locations, and their activity was recorded for 55 minutes. Analysis of
quinpirole- and saline-treated rats revealed that quinpirole-treated rats stopped at
two locales more frequently than control rats and exhibited a “ritual-like” set of
motor activities at these places (Szechtman et al. 1998). This behavior is reduced
by treatment with clomipramine.

As mentioned earlier, perseveration is a term that can be applied to a variety of
behavioral outputs ranging from relatively simple to complex. The “complex” cat-
egory is where it is not a motor output that is performed repetitively but an ap-
proach to a particular goal or the persistence in complex sequences of behavior. We
also include in the “complex” category trained operant behavior (in which rats keep
on working for food they do not eat) and also both spontaneous (Yadin et al. 1992)
and reinforced delayed alternation behavior (Tsaltas et al. 2005), which can be-
come perseverative if the animal continues to make the previous choice following
treatment, for example, with dopaminergic or serotoninergic agents. At yet higher
levels of organization, we can consider impairments of object reversal behavior to
reflect a “higher order” form of perseveration because the animal may perseverate
in responding to a formerly reinforced stimulus, even though its spatial position is
shifted across trials. Such behavior occurs when serotonin depletion is effected in
the orbitofrontal cortex (Clarke et al. 2004, 2005, 2007) in marmoset monkeys.
Moreover, this behavior is truly perseverative in the sense that reversal learning is
normal if the previously rewarded stimulus is substituted by a novel one (Clarke et
al. 2007). However, this form of perseverative responding is probably not the same
as that produced by perseveration of a learned rule in the Wisconsin Card Sort
Test, following, for example, frontal lobe damage (or OCD), which involves a so-
called “extra-dimensional shift.” This form of attentional shifting is impaired by
lateral frontal lesions in the marmoset and by catecholamine, but not serotonin,
depletion (Clarke et al. 2005, 2007; for a review, see also Robbins 2005).
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SIGNAL ATTENUATION AND EXTINCTION: 
BEHAVIORAL MODELS

Another sophisticated model is that of “signal attenuation” (see Table 8–1) in which
it is postulated that OCD results when behavior receives weakened response feed-
back (whether kinaesthetic in nature or in terms of conditioned reinforcers, anal-
ogous to sub-goals) that signal when the required contingency has been completed.
Joel et al. (2004) developed this model perhaps more fully than any other extant
model of OCD. Rats are trained to respond for food that they retrieve at a food
magazine, accompanied by a conditioned stimulus functioning as a conditioned
reinforcer. The magazine response is then separately extinguished (i.e., undergoes
signal attenuation) before the animal is allowed again to respond on the lever, but
during extinction. The critical consequence of the signal attenuation procedure is
that the rat may continue to respond on the lever but fail to complete the sequence
by moving on to the food magazine. The instrumental lever-pressing thus has a
perseverative quality that is sensitive to reductions produced by virtually all of the
drugs used therapeutically in OCD, but not to those that are less effective, such as
diazepam or desipramine. This behavior is also enhanced by lesions of the rat or-
bitofrontal cortex and sensitive to manipulations of the medial striatum, to which
the orbitofrontal cortex projects. Joel and colleagues have thus established many of
the validating criteria for a successful model of OCD, although the exact theoret-
ical explanation in terms of signal attenuation may perhaps be queried.

Signal attenuation appears to resemble a special form of extinction in which
pavlovian associations of a conditioned stimulus are extinguished differentially
with respect to instrumental responding. The perseveration in instrumental behav-
ior arises because the terminal links in the response chain leading to food are ex-
tinguished. Extinction itself also depends on an inhibitory process that suppresses
associations, which in fact remain intact (Rescorla 2001). Another example of this
form of perseveration has been reported in the performance of an attentional task
for rats that requires the animals to visit the food magazine after a nose-poke re-
sponse to detect a target visual stimulus. Perseverative nose-poking, possibly
caused by a failure to detect response feedback cues, can arise from lesions to the or-
bitofrontal cortex in rats (Chudasama et al. 2003).

PUTATIVE BEHAVIORAL ANIMAL MODELS

It would be parsimonious to describe all of these examples of perseverative re-
sponding from the level of single response elements to complicated sequences of
behavior, to a perseverative attentional focus, as resulting from failures of “behav-
ioral inhibition.” However, the fact that they are mediated by both striatal and dif-
ferent prefrontal cortical sectors suggests that these are not the same forms of in-
hibition and that a generic explanation in terms of behavioral inhibition may lack
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explanatory power. However, it is possible that particular forms of behavioral in-
hibition are impaired in OCSDs. There are several other theoretical positions that
may be especially useful in explaining certain forms of OCD while capturing some
of the clinical observations of patients exhibiting these disorders (see Table 8–1).
Thus, one set of theoretical constructs suggests that anxiety (e.g., Mowrer 1960) is
the prime trigger of OCD, as posited, for example, by Rachman and Hodgson
(1980). Active avoidance behavior in animals is well known to be very persistent be-
cause it so rarely has the opportunity for extinction, and drugs such as D-amphetamine
exacerbate this perseverative tendency. Thus behavior that initially has some adap-
tive value, for example, in avoiding shocks, apparently loses its rationale after thou-
sands of trials in which shock is never presented. We have previously alluded to the
possibility that stereotyped behavior acts as a coping response to reduce stress, and
this is essentially the same contingency. A more recent formulation is that by
Szechtman and Woody (2004) that OCD-like behavior arises as an aberrant excess
of behavior motivated by the need for security. These theories are of obvious clin-
ical interest and will ultimately depend on their validation by the importance as-
signed to anxiety in producing the persistent symptoms of OCD. A related con-
cept is that of exaggerated habit learning, in which behavior is controlled by
stimulus–response links with a generally weakened influence of the ultimate goal.
Recent evidence (e.g., Yin and Knowlton 2006) strongly supports the hypothesis
that habit learning in the rat is mediated by specific sectors of the rat striatum
(those probably homologous to the putamen). However, we have to consider what
types of mechanism are brought into play to turn habits into compulsions (for a
discussion of compulsive drug taking, which may be governed by similar mecha-
nisms, see Everitt and Robbins 2005). Evidence also indicates that habit learning
in the striatum can be influenced by prefrontal cortical mechanisms (e.g., Killcross
and Coutureau 2003).

The clinical concept of a continuum of impulsive and compulsive behavior is
highly relevant to OCSD, where different aspects of behavior can perhaps be
thought of as having impulsive or compulsive features (Hollander and Rosen
2000; Stein and Hollander 1995), or even that impulsive behavior is converted
into compulsive responding as a function of its repetition (see Everitt and Robbins
2005). This counterbalancing of impulsive and compulsive responding brings us
back to sophisticated notions of behavioral inhibition, which might become dis-
rupted in both cases, possibly while engaging different neural circuitry. These no-
tions have been recruited previously by Gray (2000) in his extensive theory based
on behavioral inhibition, in which OCD symptoms are accredited to an overactive
“checking” mechanism that compares intended actions with their outcomes: if the
hypothetical comparator is constantly detecting mismatches, this will continu-
ously engage the “checking” mechanism possibly dependent on anterior cingulate
influences.
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The Stop-Signal Reaction Time Task
Another way of explaining this form of perseveration is to suggest that in OCD or
related forms there is a failure of “stop-signal inhibition”—an inability to stop an
already-initiated response. This notion is compatible with the proposed lateral or-
bitofrontal cortex dysfunction in OCD, and OCD patients do show decreased be-
havioral and cognitive inhibition in a variety of tasks (Bannon et al. 2002; Enright
and Beech 1993; Rosenberg et al. 1997; Tien et al. 1992; for review, see Cham-
berlain et al. 2005) in addition to the increased errors they show on the alternation
learning task (Abbruzzese et al. 1995; Cavedini et al. 1998). Moreover, Logan and
Cowan (1984) have devised a way of measuring the stop-signal reaction time in
humans by measuring the response latency required to successfully cancel a re-
sponse in a choice-reaction time procedure. This can also be conceived as measur-
ing “impulsive” responding, particularly as it is impaired in attention-deficit/hy-
peractivity disorder (ADHD) and it has been shown for example that
methylphenidate normalizes stop-signal reaction time in adult ADHD patients
(Aron et al. 2003b). A recent comparative study of OCD and trichotillomania
(Chamberlain et al. 2006a) shows an interesting dissociation in which trichotillo-
mania patients had greatly lengthened stop-signal reaction times and that OCD
patients were also significantly slowed on this measure, as compared with age- and
IQ-matched control subjects. By contrast OCD patients were significantly im-
paired on the extra-dimensional shift test, whereas trichotillomania patients were
not. These data suggest that whereas OCD is accompanied by a general problem in
cognitive flexibility, trichotillomania is associated more specifically with a failure to
stop motor output. Moreover, recent studies of first-degree relatives of OCD pa-
tients (Chamberlain et al. 2007a; Menzies et al. 2008) identified behavioral deficits
on these tasks in “at risk” relatives of patients linked with structural abnormalities
of frontostriatal circuitry.

In terms of neural substrates, studies of human patients with frontal lobe dam-
age have localized the critical zone for stop-signal reaction time to the right inferior
frontal gyrus (Aron et al. 2003a), and other data implicate the striatum in this in-
hibitory process (Aron et al. 2003c). It is intriguing that precisely the same struc-
ture is implicated in the extra-dimensional shift test, according to a recent func-
tional magnetic resonance imaging study (Hampshire and Owen 2006). A method
of measuring stop-signal reaction time in rats has been developed that is dependent
on possibly homologous structures in the lateral orbitofrontal cortex and medial
striatum (Eagle and Robbins 2003; Eagle et al. 2008). Intriguingly, however, the
stop-signal reaction time is insensitive to serotoninergic manipulations in both rats
(Eagle et al. unpublished data) and humans (Chamberlain et al. 2006b, 2007b;
Clark et al. 2005).
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AUTHOR: Please provide more info regarding Eagle et al.
unpublished data above (other author names, year/date of
data, etc). 

Conclusion

We are thus intriguingly close to providing useful theoretically motivated models
of OCSDs, particularly with regard to repetitive motoric habits and inhibitory fail-
ures. Nonetheless, significant puzzles still remain (Table 8–1). For example, two of
the most sensitive of the human tests used to highlight deficits in OCD (the stop-
signal and ID/ED tests) appear to be more dependent on the integrity of the infe-
rior frontal cortex rather than the orbitofrontal cortex. Moreover, OCD patients
are not markedly impaired on simple reversal learning, which has been associated
in animal studies with damage to the orbitofrontal cortex (Boulougouris et al.
2007) and which is sensitive to serotonin manipulations (Boulougouris et al.
2008). Neuroimaging versions of these tasks may yet identify subtle brain dysfunc-
tion in patients and unaffected relatives at risk of OCSDs, in the absence of overt
behavioral deficits. OCD has received the most research attention to date; it would
be of considerable interest to determine whether the more obvious motor mani-
festations of other conditions such as trichotillomania are associated with struc-
tural and/or functional impairments of similar corticostriatal loops, possibly more
at striatal than cortical nodes, or whether, as seems likely, these are associated with
impairments in other frontostriatal pathways, for example, related to the putamen
and its role in the control of motor output.

AUTHOR: Please spell out ID/ED as used above. 
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